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Abstract

A simple numerical method is presented aimed at generating 4D
geodesics for particles and photons in the Kerr spacetime. Particular
attention is paid to the problem of generating a variety of usable initial
conditions for the simulator. The source code for the suite of programs
is publically available under a BSD licence.

1 Bound Orbits in the Kerr Spacetime

The geodesic equations for the Kerr spacetime are complex second or-
der differential equations which are well known and can be solved using
standard numerical integration techniques, typically one of the Runge-
Kutta methods. Unfortunately this approach is unsuitable for studying
horizon crossing scenarios because in these cases the t variable becomes
”unresponsive” near the outer horizon and slows the simulation to a
near standstill without ever getting there.

Rather than attempting to formulate and solve these geodesic equa-
tions, the approach taken here is to evolve the first order equations of
motion expressed in terms of the constants of motion E (energy), L
(equatorial angular momentum), and @ (Carter’s constant). Because
t is not an integration variable here, these equations do not grind to a
halt at the horizon.

The approach is so straighforward that the complete simulator
script consists of about a hundred lines of Python code [6].



1.1 Equations of motion

This is the well known set of equations describing Kerr orbits in terms

of £, L, and Q:
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These are essentially equations 2 and 3 from [1], fully expanded except
for the two potential functions R and © which, together with their
differentials, are defined in equations 6-9 below.

Notice also the use of the ” Carter-Mino” time variable, A, to render
the R and © equations (plus their differentials of course) mutually
independent. In terms of this time variable, the potentials are simply
the squares of the r and 6 velocities.
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The ¢ and ¢ equations (1 and 4) can be evolved trivially using the
Euler method, but the R and © equations (2 and 3) require a little
more effort. Because of the square roots the Euler approach is severely
hampered by the need to identify turning points, which is difficult to
achieve reliably, and even harder to do without compromising the ac-
curacy of the simulation. The approach described here is to use a sym-
plectic Stormer-Verlet integrator [2] to evolve the R and © equations,
which turns out to be a surprisingly simple solution, and is possible
because the potential equations (when squared) are both of the form:



i?—V(z)=0 (10)

This expresison is used to quantify the integration errors, whilst the
two differentiated potentials in equations 7 and 9 are used for velocity
updates in the integrator routines.

The simulator uses composition [2] to step the (even) integration
order from 2 in the case of basic Stormer-Verlet, up to a maximum of
10th order.

2 Finding initial conditions

Another difficulty in generating orbits is the problem of generating ini-
tial conditions. Finding an interesting set by trial and error is hard,
partly because many combinations of the constants of motion are un-
physical.

Here I present a straightforward way of generating two types of
bound orbits in three spatial dimensions. It is based on solving sets
of three potential equations under various conditions using the three
constants of motion E, L, and ) as variables, and turning points of
the potentials as constant parameters.

2.1 Constant radius (”spherical”) orbits

For constant radius orbits at rg, we are looking for a double root (local
maximum) of the quartic R(r), in other words we want the radial
velocity to be zero, and its differential to also be zero so that the
radial speed remains zero during the orbit. ©(#) will also be zero at
the maximum deviation from equatorial (the minimum value of 6).
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2.2 Variable radius (”spherical shell”) orbits

For variable radius orbits we are looking for two distinct roots of the
quartic R(r), in other words that the orbit is bound between two r
values, 1 and 5. The ©(6) condition is unchanged from the constant
radius case above.



R(r,B,L,Q) = 0 (14)
R(ry, E,L,Q) =0 (15)
©Omin, E,L,Q)=0 (16)

2.3 Plummeting (an aside)

These ”orbits” are not the focus of this article, but are easily specified
by setting L = 0 after generating a spherical orbit as in equations 11-13
above.

2.4 Finding the roots

Equations 11-13 and 14-16 can of course be solved by various root-
finding techniques, but the equations and algorithms can often be-
come messy and potentially error-prone, with no easy way to check
intermediate results. For this work I took a simpler approach, forming
a sum-of-squares error function from the constraints described above,
minimizing it, then making sure it is sufficiently close to zero. By
experience I have found that the Nelder-Mead algorithm from Scipy
converges reliably from zero initial conditions on F, L, and @, and so
far have found no reason to look elsewhere.

Once the optimization has terminated the generation script then
writes an initial conditions file (including the final values of E, L, and
Q as well as optimizer status) in JSON format for use as input to the
simulator. Here is an example:

{ ™" : 1.0,
"a" : -1.0,
"mu" : 1.0,

"E" : 0.965076383468,
"Lz" : 3.46129127476,
"C" : 6.34780511822,

"r" : 12.0,

"theta" : 1.57079632679,
"time" : 20.0,

"step" : 0.00001,

"integratorOrder" : 8,

"error" : 7.682937237e-24,

"success" : "True",

"message" : "Optimization terminated successfully."

The output of the simulator has been informally checked against
a number of publically available result sets and programs to guard



against the possibility of gross errors. This includes but is not limited
to the program GRorbits for equatorial geodesics [5], together with
published papers for spherical particle orbits [4], and photon orbits [3].

3 The programs

The sources for the programs [6] described here are publically available
on GitHub, under a BSD licence. These are part of a suite of very small
scripts and programs which are intended to implement the methods in
this article as concisely as possible. There is a short README file
in the root directory which gives basic instructions for running the
simulations.
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